Estimation of Long-Term Surface Downward Longwave Radiation over the Global Land from 2000 to 2018

Author:

Feng ChunjieORCID,Zhang Xiaotong,Wei Yu,Zhang WeiyuORCID,Hou Ning,Xu Jiawen,Yang Shuyue,Xie XianhongORCID,Jiang BoORCID

Abstract

It is of great importance for climate change studies to construct a worldwide, long-term surface downward longwave radiation (Ld, 4–100 μm) dataset. Although a number of global Ld datasets are available, their low accuracies and coarse spatial resolutions limit their applications. This study generated a daily Ld dataset with a 5-km spatial resolution over the global land surface from 2000 to 2018 using atmospheric parameters, which include 2-m air temperature (Ta), relative humidity (RH) at 1000 hPa, total column water vapor (TCWV), surface downward shortwave radiation (Sd), and elevation, based on the gradient boosting regression tree (GBRT) method. The generated Ld dataset was evaluated using ground measurements collected from AmeriFlux, AsiaFlux, baseline surface radiation network (BSRN), surface radiation budget network (SURFRAD), and FLUXNET networks. The validation results showed that the root mean square error (RMSE), mean bias error (MBE), and correlation coefficient (R) values of the generated daily Ld dataset were 17.78 W m−2, 0.99 W m−2, and 0.96 (p < 0.01). Comparisons with other global land surface radiation products indicated that the generated Ld dataset performed better than the clouds and earth’s radiant energy system synoptic (CERES-SYN) edition 4.1 dataset and ERA5 reanalysis product at the selected sites. In addition, the analysis of the spatiotemporal characteristics for the generated Ld dataset showed an increasing trend of 1.8 W m−2 per decade (p < 0.01) from 2003 to 2018, which was closely related to Ta and water vapor pressure. In general, the generated Ld dataset has a higher spatial resolution and accuracy, which can contribute to perfect the existing radiation products.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3