NDFTC: A New Detection Framework of Tropical Cyclones from Meteorological Satellite Images with Deep Transfer Learning

Author:

Pang Shanchen,Xie Pengfei,Xu Danya,Meng Fan,Tao Xixi,Li Bowen,Li Ying,Song TaoORCID

Abstract

Accurate detection of tropical cyclones (TCs) is important to prevent and mitigate natural disasters associated with TCs. Deep transfer learning methods have advantages in detection tasks, because they can further improve the stability and accuracy of the detection model. Therefore, on the basis of deep transfer learning, we propose a new detection framework of tropical cyclones (NDFTC) from meteorological satellite images by combining the deep convolutional generative adversarial networks (DCGAN) and You Only Look Once (YOLO) v3 model. The algorithm process of NDFTC consists of three major steps: data augmentation, a pre-training phase, and transfer learning. First, to improve the utilization of finite data, DCGAN is used as the data augmentation method to generate images simulated to TCs. Second, to extract the salient characteristics of TCs, the generated images obtained from DCGAN are inputted into the detection model YOLOv3 in the pre-training phase. Furthermore, based on the network-based deep transfer learning method, we train the detection model with real images of TCs and its initial weights are transferred from the YOLOv3 trained with generated images. Training with real images helps to extract universal characteristics of TCs and using transferred weights as initial weights can improve the stability and accuracy of the model. The experimental results show that the NDFTC has a better performance, with an accuracy (ACC) of 97.78% and average precision (AP) of 81.39%, in comparison to the YOLOv3, with an ACC of 93.96% and AP of 80.64%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TL-iTransformer: Revolutionizing sea surface temperature prediction through iTransformer and transfer learning;Earth Science Informatics;2024-08-02

2. EasyRP-R-CNN: a fast cyclone detection model;The Visual Computer;2024-06-03

3. Cyclone detection with end-to-end super resolution and faster R-CNN;Earth Science Informatics;2024-03-26

4. Tropical Cyclone Detection and Tracking Using YOLOv8 Algorithm;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01

5. Super Cyclone Detection and Tracking Using YOLOv8 Algorithm;2024 International Conference on Emerging Systems and Intelligent Computing (ESIC);2024-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3