A New Method for Winter Wheat Mapping Based on Spectral Reconstruction Technology

Author:

Li Shilei,Li Fangjie,Gao MaofangORCID,Li Zhaoliang,Leng Pei,Duan Sibo,Ren Jianqiang

Abstract

Timely and accurate estimation of the winter wheat planting area and its spatial distribution is essential for the implementation of crop growth monitoring and yield estimation, and hence for the development of national agricultural production and food security. In remotely sensed winter wheat mapping based on spectral similarity, the reference curve is obtained by averaging multiple standard curves, which limits mapping accuracy. We propose a spectral reconstruction method based on singular value decomposition (SR-SVD) for winter wheat mapping based on the unique growth characteristics of crops. Using Sentinel-2 A/B satellite data, we tested the SR-SVD method in Puyang County, and Shenzhou City, China. Performance was increased, with the optimal overall accuracy and the Kappa of Puyang County and Shenzhou City were 99.52% and 0.99, and 98.26% and 0.97, respectively. We selected the spectral angle mapper (SAM) and Euclidean Distance (ED) as the similarity measures. Compared to spectral similarity methods, the SR-SVD method significantly improves mapping accuracy, as it avoids excessive extraction, can identify more detailed information, and is advantageous in distinguishing non-winter wheat pixels. Three commonly used supervised classification methods, support vector machine (SVM), maximum likelihood (ML), and minimum distance (MD) were used for comparison. Results indicate that SR-SVD has the highest mapping accuracy and greatly reduces the number of misidentified pixels. Therefore, the SR-SVD method can achieve high-precision crop mapping and provide technical support for monitoring regional crop planting structure information.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3