Tree Species Identification in Urban Environments Using TensorFlow Lite and a Transfer Learning Approach

Author:

Pacheco-Prado Diego12ORCID,Bravo-López Esteban23ORCID,Ruiz Luis Ángel1ORCID

Affiliation:

1. Geo-Environmental Cartography and Remote Sensing Group (CGAT), Universitat Politècnica de València, 46022 Valencia, Spain

2. Instituto de Estudios de Régimen Seccional del Ecuador (IERSE), Vicerrectorado de Investigaciones, Universidad del Azuay, Cuenca 010204, Ecuador

3. Centre for Advanced Studies in Earth Sciences, Energy and Environment, Department of Cartographic, Geodetic and Photogrammetric Engineering, University of Jaen, 23071 Jaen, Spain

Abstract

Building and updating tree inventories is a challenging task for city administrators, requiring significant costs and the expertise of tree identification specialists. In Ecuador, only the Trees Inventory of Cuenca (TIC) contains this information, geolocated and integrated with the taxonomy, origin, leaf, and crown structure, phenological problems, and tree images taken with smartphones of each tree. From this dataset, we selected the fourteen classes with the most information and used the images to train a model, using a Transfer Learning approach, that could be deployed on mobile devices. Our results showed that the model based on ResNet V2 101 performed best, achieving an accuracy of 0.83 and kappa of 0.81 using the TensorFlow Lite interpreter, performing better results using the original model, with an accuracy and kappa of 0.912 and 0.905, respectively. The classes with the best performance were Ramo de novia, Sauce, and Cepillo blanco, which had the highest values of Precision, Recall, and F1-Score. The classes Eucalipto, Capuli, and Urapan were the most difficult to classify. Our study provides a model that can be deployed on Android smartphones, being the beginning of future implementations.

Funder

University of Azuay

Publisher

MDPI AG

Subject

Forestry

Reference67 articles.

1. Salam, A. (2020). Internet of Things, Springer.

2. Importance, Utilization and Health of Urban Forests: A Review;Solomou;Not. Bot. Horti Agrobot. Cluj-Napoca,2019

3. Pacheco, D., and Ávila, L. (2017, January 27–29). Inventario de Parques y Jardines de La Ciudad de Cuenca Con UAV y Smartphones. Proceedings of the XVI Conferencia de Sistemas de Información Geográfica, Cuenca, Spain.

4. Drones En Espacios Urbanos: Caso de Estudio En Parques, Jardines y Patrimonio;Pacheco;Estoa,2017

5. GeoAI to Implement an Individual Tree Inventory: Framework and Application of Heat Mitigation;Das;Urban For. Urban Green.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3