Energy Efficient Resource Allocation for M2M Devices in LTE/LTE-A

Author:

Rekhissa Hajer BenORCID,Belleudy Cecile,Bessaguet Philippe

Abstract

Machine-to-machine (M2M) communication consists of the communication between intelligent devices without human intervention. Long term evolution (LTE) and Long-term evolution-advanced (LTE-A) cellular networks technologies are excellent candidates to support M2M communication as they offer high data rates, low latencies, high capacities and more flexibility. However, M2M communication over LTE/LTE-A networks faces some challenges. One of these challenges is the management of resource radios especially on the uplink. LTE schedulers should be able to meet the needs of M2M devices, such as power management and the support of large number of devices, in addition to handling both human-to-human (H2H) and M2M communications. Motivated by the fundamental requirement of extending the battery lives of M2M devices and managing an LTE network system, including both M2M devices and H2H users, in this paper, two channel-aware scheduling algorithms on the uplink are proposed. Both of them consider the coexistence of H2H and M2M communications and aim to reduce energy consumption in M2M devices. The first algorithm, called FDPS-carrier-by-carrier modified (CBC-M), takes into account channel quality and power consumption while allocating radio resources. Our second algorithm, recursive maximum expansion modified (RME-M), offers a balance between delay requirement and energy consumption. Depending on the system requirements, RME-M considers both channel quality and system deadlines in an adjustable manner according to M2M devices needs. Simulation results show that the proposed schedulers outperform the round-robin scheduler in terms of energy efficiency and have better cell spectral efficiency.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3