The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images

Author:

Xia Ziqing,Peng Yiping,Liu Shanshan,Liu Zhenhua,Wang GuangxingORCID,Zhu A-XingORCID,Hu Yueming

Abstract

This study proposes a method for determining the optimal image date to improve the evaluation of cultivated land quality (CLQ). Five vegetation indices: leaf area index (LAI), difference vegetation index (DVI), enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and ratio vegetation index (RVI) are first retrieved using the PROSAIL model and Gaofen-1 (GF-1) images. The indices are then introduced into four regression models at different growth stages for assessing CLQ. The optimal image date of CLQ evaluation is finally determined according to the root mean square error (RMSE). This method is tested and validated in a rice growth area of Southern China based on 115 sample plots and five GF-1 images acquired at the tillering, jointing, booting, heading to flowering, and milk ripe and maturity stage of rice in 2015, respectively. The results show that the RMSEs between the measured and estimated CLQ from four vegetation index-based regression models at the heading to flowering stage are smaller than those at the other growth stages, indicating that the image date corresponding with the heading to flowering stage is optimal for CLQ evaluation. Compared with other vegetation index-based models, the LAI-based logarithm model provides the most accurate estimates of CLQ. The optimal model is also driven using the GF-1 image at the heading to flowering stage to map CLQ of the study area, leading to a relative RMSE of 14.09% at the regional scale. This further implies that the heading to flowering stage is the optimal image time for evaluating CLQ. This study is the first effort to provide an applicable method of selecting the optimal image date to improve the estimation of CLQ and thus advanced the literature in this field.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3