A Road Behavior Pattern-Detection Model in Querétaro City Streets by the Use of Shape Descriptors

Author:

Trejo-Morales Antonio1ORCID,Jimenez-Hernandez Hugo1ORCID

Affiliation:

1. Facultad de Informática, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76230, Querétaro, Mexico

Abstract

In this research, a proposed model aims to automatically identify patterns of spatial and temporal behavior of moving objects in video sequences. The moving objects are analyzed and characterized based on their shape and observable attributes in displacement. To quantify the moving objects over time and form a homogeneous database, a set of shape descriptors is introduced. Geometric measurements of shape, contrast, and connectedness are used to represent each moving object. The proposal uses Granger’s theory to find causal relationships from the history of each moving object stored in a database. The model is tested in two scenarios; the first is a public database, and the second scenario uses a proprietary database from a real scenario. The results show an average accuracy value of 78% in the detection of atypical behaviors in positive and negative dependence relationships.

Publisher

MDPI AG

Reference51 articles.

1. A survey on activity recognition and behavior understanding in video surveillance;Vishwakarma;Vis. Comput.,2013

2. Smart City and information technology: A review;Camero;Cities,2019

3. Researches on urban freight transport in the Mexican city of Queretaro: From central and peri-urban areas;J. Urban Environ. Eng.,2015

4. A modeling and micro-simulation approach to estimate the location, number and size of loading/unloading bays: A case study in the city of Querétaro, Mexico;Transp. Res. Interdiscip. Perspect.,2021

5. Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges;Trencher;Technol. Forecast. Soc. Chang.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3