Online Prediction Method of Transmission Line Icing Based on Robust Seasonal Decomposition of Time Series and Bilinear Temporal–Spectral Fusion and Improved Beluga Whale Optimization Algorithm–Least Squares Support Vector Regression

Author:

Li Qiang1,Liao Xiao1,Cui Wei1,Wang Ying1,Cao Hui2ORCID,Zhong Xianjing2ORCID

Affiliation:

1. State Grid Information & Telecommunication Group Co., Ltd., Beijing 610041, China

2. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Due to the prevalent challenges of inadequate accuracy, unstandardized parameters, and suboptimal efficiency with regard to icing prediction, this study introduces an innovative online method for icing prediction based on Robust STL–BTSF and IBWO–LSSVR. Firstly, this study adopts the Robust Seasonal Decomposition of Time Series and Bilinear Temporal–Spectral Fusion (Robust STL–BTSF) approach, which is demonstrably effective for short-term and limited sample data preprocessing. Subsequently, injecting a multi-faceted enhancement approach to the Beluga Whale Optimization algorithm (BWO), which integrates a nonlinear balancing factor, a population optimization strategy, a whale fall mechanism, and an ascendant elite learning scheme. Then, using the Improved BWO (IBWO) above to optimize the key hyperparameters of Least Squares Support Vector Regression (LSSVR), a superior offline predictive part is constructed based on this approach. In addition, an Incremental Online Learning algorithm (IOL) is imported. Integrating the two parts, the advanced online icing prediction model for transmission lines is built. Finally, simulations based on actual icing data unequivocally demonstrate that the proposed method markedly enhances both the accuracy and speed of predictions, thereby presenting a sophisticated solution for the icing prediction on the transmission lines.

Funder

State Grid Information and Telecommunication Group scientific and technological innovation projects “Research on Power Digital Space Technology System and Key Technologies”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3