Soft Sensor Technology for the Determination of Mechanical Seal Friction Power Performance

Author:

Reeh Nils12ORCID,Manthei Gerd1,Klar Peter J.3

Affiliation:

1. Department of Mechanical Engineering and Power Engineering, THM University of Applied Sciences, 35390 Giessen, Germany

2. Herborner Pumpentechnik GmbH & Co. KG, 35745 Herborn, Germany

3. Institute of Experimental Physics I, Justus Liebig University, 35390 Giessen, Germany

Abstract

Mechanical seals ensure the internal sealing of centrifugal pumps from the surrounding environment. They are one of the most critical components in a centrifugal pump. For this reason, the condition of mechanical seals should be monitored during operation. Mechanical seal friction power is an important component of mechanical losses in centrifugal pumps and is used as an indicator of wear and therefore seal condition. The soft sensor described in this paper is based on temperature measurements at the seal and can be used for determining the frictional power performance. A major factor in determining frictional power performance is the heat transfer between the mechanical seal and the medium inside the pump. For calculating the heat transfer, the stationary temperature fields in the rings of the mechanical seal are described by transmission efficiencies. The root mean squared error was determined for steady-state operating conditions to assess the quality of the soft sensor calculation. The frictional power performance can be determined by recording the temperature at the mechanical seal mating ring and the medium. The algorithm detects when the steady-state operating conditions change but does not map the dynamic changes between the stationary operating conditions.

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3