Robust Feature Representation Using Multi-Task Learning for Human Activity Recognition

Author:

Azadi Behrooz1ORCID,Haslgrübler Michael1ORCID,Anzengruber-Tanase Bernhard1,Sopidis Georgios1ORCID,Ferscha Alois2

Affiliation:

1. Pro2Future GmbH, Altenberger Strasse 69, 4040 Linz, Austria

2. Institute of Pervasive Computing, Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria

Abstract

Learning underlying patterns from sensory data is crucial in the Human Activity Recognition (HAR) task to avoid poor generalization when coping with unseen data. A key solution to such an issue is representation learning, which becomes essential when input signals contain activities with similar patterns or when patterns generated by different subjects for the same activity vary. To address these issues, we seek a solution to increase generalization by learning the underlying factors of each sensor signal. We develop a novel multi-channel asymmetric auto-encoder to recreate input signals precisely and extract indicative unsupervised futures. Further, we investigate the role of various activation functions in signal reconstruction to ensure the model preserves the patterns of each activity in the output. Our main contribution is that we propose a multi-task learning model to enhance representation learning through shared layers between signal reconstruction and the HAR task to improve the robustness of the model in coping with users not included in the training phase. The proposed model learns shared features between different tasks that are indeed the underlying factors of each input signal. We validate our multi-task learning model using several publicly available HAR datasets, UCI-HAR, MHealth, PAMAP2, and USC-HAD, and an in-house alpine skiing dataset collected in the wild, where our model achieved 99%, 99%, 95%, 88%, and 92% accuracy. Our proposed method shows consistent performance and good generalization on all the datasets compared to the state of the art.

Funder

FFG

Austrian Federal Ministry for Digital and Economic Affairs and of the Provinces of Upper Austria and Styria

Austrian Research Promotion Agency FFG

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3