Utilizing the Off-Target Effects of T1R3 Antagonist Lactisole to Enhance Nitric Oxide Production in Basal Airway Epithelial Cells

Author:

McMahon Derek B.ORCID,Jolivert Jennifer F.,Kuek Li Eon,Adappa Nithin D.,Palmer James N.,Lee Robert J.ORCID

Abstract

Human airway sweet (T1R2 + T1R3), umami (T1R1 + T1R3), and bitter taste receptors (T2Rs) are critical components of the innate immune system, acting as sensors to monitor pathogenic growth. T2Rs detect bacterial products or bitter compounds to drive nitric oxide (NO) production in both healthy and diseased epithelial cell models. The NO enhances ciliary beating and also directly kills pathogens. Both sweet and umami receptors have been characterized to repress bitter taste receptor signaling in healthy and disease models. We hypothesized that the sweet/umami T1R3 antagonist lactisole may be used to alleviate bitter taste receptor repression in airway basal epithelial cells and enhance NO production. Here, we show that lactisole activates cAMP generation, though this occurs through a pathway independent of T1R3. This cAMP most likely signals through EPAC to increase ER Ca2+ efflux. Stimulation with denatonium benzoate, a bitter taste receptor agonist which activates largely nuclear and mitochondrial Ca2+ responses, resulted in a dramatically increased cytosolic Ca2+ response in cells treated with lactisole. This cytosolic Ca2+ signaling activated NO production in the presence of lactisole. Thus, lactisole may be useful coupled with bitter compounds as a therapeutic nasal rinse or spray to enhance beneficial antibacterial NO production in patients suffering from chronic inflammatory diseases such as chronic rhinosinusitis.

Funder

National Institutes of Health Grants

Cystic Fibrosis Foundation

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3