GIS-Based Analytical Hierarchy Process for Identifying Groundwater Potential Zones in Punjab, Pakistan

Author:

Naeem Maira12,Farid Hafiz Umar2ORCID,Madni Muhammad Arbaz3,Albano Raffaele4ORCID,Inam Muhammad Azhar2,Shoaib Muhammad2ORCID,Shoaib Muhammad1,Rashid Tehmena5,Dilshad Aqsa2,Ahmad Akhlaq6

Affiliation:

1. Field Wing of Punjab Agricultural Department, Agriculture House, Lahore 05467, Pakistan

2. Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60000, Pakistan

3. Division of Environmental Science and Infrastructure Engineering, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan

4. School of Engineering, University of Basilicata, 85100 Potenza, Italy

5. Agricultural Mechanization Research Institute, Multan 60000, Pakistan

6. Department of Mechanical Engineering, Bahauddin Zakariya University, Multan 60000, Pakistan

Abstract

The quality and level of groundwater tables have rapidly declined because of intensive pumping in Punjab (Pakistan). For sustainable groundwater supplies, there is a need for better management practices. So, the identification of potential groundwater recharge zones is crucial for developing effective management systems. The current research is based on integrating seven contributing factors, including geology, soil map, land cover/land use, lineament density, drainage density, slope, and rainfall to categorize the area into various groundwater recharge potential zones using remote sensing, geographic information system (GIS), and analytical hierarchical process (AHP) for Punjab, Pakistan. The weights (for various thematic layers) and rating values (for sub-classes) in the overlay analysis were assigned for thematic layers and then modified and normalized using the AHP. The result indicates that about 17.88% of the area falls under the category of very high groundwater potential zones (GWPZs). It was found that only 12.27% of the area falls under the category of very low GWPZs. The results showed that spatial technologies like remote sensing and geographic information system (GIS), when combined with AHP technique, provide a robust platform for studying GWPZs. This will help the public and government sectors to understand the potential zone for sustainable groundwater management.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3