Cloud-Fog Architecture Based Energy Management and Decision-Making for Next-Generation Distribution Network with Prosumers and Internet of Things Devices

Author:

Yue Jingpeng,Hu Zhijian,He Ruijiang,Zhang Xinyan,Dulout Jeremy,Li Chendan,Guerrero Josep M.

Abstract

The increasing penetration of distributed energy resources in next-generation distribution networks has resulted in an explosion of the Internet of Things to upgrade their control and monitoring systems. This poses new challenges for the efficient energy management and reliable decision-making of these systems. This is due to the potentially large amount of data that cannot be handled by the traditional architecture of control and data acquisition systems, which have limited storage and computation capabilities. In order to adapt to the new energy management requirements of next-generation distribution networks, a state-of-the-art energy management method called cloud-fog hierarchical architecture is proposed in this work. Based on this architecture, we established a utility and revenue model for various stakeholders, including normal customers, prosumers, and distribution system operators. Furthermore, by embedding an artificial intelligence module in the proposed architecture, energy management could be implemented automatically. Neural networks were used at fog computing layers to achieve regression prediction of energy usage behavior and power source output. Moreover, based on the maximizing utility objective function, the amount of energy consumption of customers and prosumers in the distribution network was optimized with a genetic algorithm at cloud layer. The proposed methods were tested with a set of normal customers and prosumers in a general distribution network, and the results, including the captured usage patterns of the customers and revenues of various stakeholders, verify the effectiveness of the proposed method. This work provides an effective reference for the development of real-time energy management systems for the next-generation distribution network.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3