Efficacy Improvement of Anomaly Detection by Using Intelligence Sharing Scheme

Author:

Tahir Muhammad,Li Mingchu,Ayoub NaeemORCID,Aamir Muhammad

Abstract

Computer networks are facing threats of ever-increasing frequency and sophistication. Encryption is becoming the norm in both legitimate and malicious network traffic. Therefore, intrusion detection systems (IDSs) are now required to work efficiently regardless of the encryption. In this study, we propose two new methods to improve the efficacy of the Cisco Cognitive Threat Analytics (CTA) system. In the first method, the efficacy of CTA is improved by sharing of intelligence information across a large number of enterprise networks. In the second method, a four variant-based global reputation model (GRM) is designed by employing an outlier ensemble normalization algorithm in the presence of missing data. Intelligence sharing provides additional information in the intrusion detection process, which is much needed, particularly for analysis of encrypted traffic with inherently low information content. Robustness of the novel outlier ensemble normalization algorithm is also demonstrated. These improvements are measured using both encrypted and non-encrypted network traffic. Results show that the proposed information sharing methods greatly improve the anomaly detection efficacy of malicious network behavior with bad base-line detection efficacy and slightly improve upon the average case.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

1. Guide to Intrusion Detection and Prevention Systems (IDPS);Scarfone,2007

2. Inside Network Perimeter Security (Inside);Northcutt,2005

3. A Multi-level Evidence-based Cyber Crime Prosecution Information System

4. Anomaly-based network intrusion detection: Techniques, systems and challenges

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3