Multimodal Federated Learning: A Survey

Author:

Che Liwei1ORCID,Wang Jiaqi1ORCID,Zhou Yao2ORCID,Ma Fenglong1ORCID

Affiliation:

1. College of Information Sciences and Technology, Pennsylvania State University, University Park, PA 16802, USA

2. Instacart, San Francisco, CA 94105, USA

Abstract

Federated learning (FL), which provides a collaborative training scheme for distributed data sources with privacy concerns, has become a burgeoning and attractive research area. Most existing FL studies focus on taking unimodal data, such as image and text, as the model input and resolving the heterogeneity challenge, i.e., the challenge of non-identical distribution (non-IID) caused by a data distribution imbalance related to data labels and data amount. In real-world applications, data are usually described by multiple modalities. However, to the best of our knowledge, only a handful of studies have been conducted to improve system performance utilizing multimodal data. In this survey paper, we identify the significance of this emerging research topic of multimodal federated learning (MFL) and present a literature review on the state-of-art MFL methods. Furthermore, we categorize multimodal federated learning into congruent and incongruent multimodal federated learning based on whether all clients possess the same modal combinations. We investigate the feasible application tasks and related benchmarks for MFL. Lastly, we summarize the promising directions and fundamental challenges in this field for future research.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference84 articles.

1. Multimodal machine learning: A survey and taxonomy;Ahuja;IEEE Trans. Pattern Anal. Mach. Intell.,2018

2. McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B.A. (2017, January 20–22). Communication-efficient learning of deep networks from decentralized data. Proceedings of the Artificial Intelligence and Statistics, PMLR, Fort Lauderdale, FL, USA.

3. Federated learning on non-IID data: A survey;Zhu;Neurocomputing,2021

4. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. (2018). Federated Learning with Non-IID Data. arXiv.

5. Robust and communication-efficient federated learning from non-iid data;Sattler;IEEE Trans. Neural Netw. Learn. Syst.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3