Boosting Semantic Segmentation by Conditioning the Backbone with Semantic Boundaries

Author:

Ishikawa Haruya1ORCID,Aoki Yoshimitsu1ORCID

Affiliation:

1. Department of Electronics and Electrical Engineering, Facility of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Abstract

In this paper, we propose the Semantic-Boundary-Conditioned Backbone (SBCB) framework, an effective approach to enhancing semantic segmentation performance, particularly around mask boundaries, while maintaining compatibility with various segmentation architectures. Our objective is to improve existing models by leveraging semantic boundary information as an auxiliary task. The SBCB framework incorporates a complementary semantic boundary detection (SBD) task with a multi-task learning approach. It enhances the segmentation backbone without introducing additional parameters during inference or relying on independent post-processing modules. The SBD head utilizes multi-scale features from the backbone, learning low-level features in early stages and understanding high-level semantics in later stages. This complements common semantic segmentation architectures, where features from later stages are used for classification. Extensive evaluations using popular segmentation heads and backbones demonstrate the effectiveness of the SBCB. It leads to an average improvement of 1.2% in IoU and a 2.6% gain in the boundary F-score on the Cityscapes dataset. The SBCB framework also improves over- and under-segmentation characteristics. Furthermore, the SBCB adapts well to customized backbones and emerging vision transformer models, consistently achieving superior performance. In summary, the SBCB framework significantly boosts segmentation performance, especially around boundaries, without introducing complexity to the models. Leveraging the SBD task as an auxiliary objective, our approach demonstrates consistent improvements on various benchmarks, confirming its potential for advancing the field of semantic segmentation.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementing ViT Models for Traffic Sign Detection in Autonomous Driving Systems;2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST);2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3