Affiliation:
1. School of Information Science & Technology, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China
2. School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
Abstract
Defect detection in steel surface focuses on accurately identifying and precisely locating defects on the surface of steel materials. Methods of defect detection with deep learning have gained significant attention in research. Existing algorithms can achieve satisfactory results, but the accuracy of defect detection still needs to be improved. Aiming at this issue, a hybrid attention network is proposed in this paper. Firstly, a CBAM attention module is used to enhance the model’s ability to learn effective features. Secondly, an adaptively spatial feature fusion (ASFF) module is used to improve the accuracy by extracting multi-scale information of defects. Finally, the CIOU algorithm is introduced to optimize the training loss of the baseline model. The experimental results show that the performance of our method in this work is superior on the NEU-DET dataset, with an 8.34% improvement in mAP. Compared with major algorithms of object detection such as SSD, EfficientNet, YOLOV3, and YOLOV5, the mAP was improved by 16.36%, 41.68%, 20.79%, and 13.96%, respectively. This demonstrates that the mAP of our proposed method is higher than other major algorithms.
Funder
Key Laboratory of Intelligent Manufacturing and Industrial Internet Technology, Fujian Province University
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献