Defect Detection in Steel Using a Hybrid Attention Network

Author:

Zhou Mudan1,Lu Wentao2ORCID,Xia Jingbo1,Wang Yuhao2

Affiliation:

1. School of Information Science & Technology, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China

2. School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China

Abstract

Defect detection in steel surface focuses on accurately identifying and precisely locating defects on the surface of steel materials. Methods of defect detection with deep learning have gained significant attention in research. Existing algorithms can achieve satisfactory results, but the accuracy of defect detection still needs to be improved. Aiming at this issue, a hybrid attention network is proposed in this paper. Firstly, a CBAM attention module is used to enhance the model’s ability to learn effective features. Secondly, an adaptively spatial feature fusion (ASFF) module is used to improve the accuracy by extracting multi-scale information of defects. Finally, the CIOU algorithm is introduced to optimize the training loss of the baseline model. The experimental results show that the performance of our method in this work is superior on the NEU-DET dataset, with an 8.34% improvement in mAP. Compared with major algorithms of object detection such as SSD, EfficientNet, YOLOV3, and YOLOV5, the mAP was improved by 16.36%, 41.68%, 20.79%, and 13.96%, respectively. This demonstrates that the mAP of our proposed method is higher than other major algorithms.

Funder

Key Laboratory of Intelligent Manufacturing and Industrial Internet Technology, Fujian Province University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3