Shape Sensing in Plate Structures through Inverse Finite Element Method Enhanced by Multi-Objective Genetic Optimization of Sensor Placement and Strain Pre-Extrapolation

Author:

Del Priore Emiliano1ORCID,Lampani Luca1ORCID

Affiliation:

1. Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy

Abstract

The real-time reconstruction of the displacement field of a structure from a network of in situ strain sensors is commonly referred to as “shape sensing”. The inverse finite element method (iFEM) stands out as a highly effective and promising approach to perform this task. In the current investigation, this technique is employed to monitor different plate structures experiencing flexural and torsional deformation fields. In order to reduce the number of installed sensors and obtain more accurate results, the iFEM is applied in synergy with smoothing element analysis (SEA), which allows the pre-extrapolation of the strain field over the entire structure from a limited number of measurement points. For the SEA extrapolation to be effective for a multitude of load cases, it is necessary to position the strain sensors appropriately. In this study, an innovative sensor placement strategy that relies on a multi-objective genetic algorithm (NSGA-II) is proposed. This approach aims to minimize the root mean square error of the pre-extrapolated strain field across a set of mode shapes for the examined plate structures. The optimized strain reconstruction is subsequently utilized as input for the iFEM technique. Comparisons are drawn between the displacement field reconstructions obtained using the proposed methodology and the conventional iFEM. In order to validate such methodology, two different numerical case studies, one involving a rectangular cantilevered plate and the other encompassing a square plate clamped at the edges, are investigated. For the considered case studies, the results obtained by the proposed approach reveal a significant improvement in the monitoring capabilities over the basic iFEM algorithm with the same number of sensors.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3