Ultrasensitive Electrochemical Immunosensors Using Nanobodies as Biocompatible Sniffer Tools of Agricultural Contaminants and Human Disease Biomarkers

Author:

Ionescu Rodica Elena1ORCID

Affiliation:

1. Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie CS 42060, 10004 Troyes, France

Abstract

Nanobodies (Nbs) are known as camelid single-domain fragments or variable heavy chain antibodies (VHH) that in vitro recognize the antigens (Ag) similar to full-size antibodies (Abs) and in vivo allow immunoreactions with biomolecule cavities inaccessible to conventional Abs. Currently, Nbs are widely used for clinical treatments due to their remarkably improved performance, ease of production, thermal robustness, superior physical and chemical properties. Interestingly, Nbs are also very promising bioreceptors for future rapid and portable immunoassays, compared to those using unstable full-size antibodies. For all these reasons, Nbs are excellent candidates in ecological risk assessments and advanced medicine, enabling the development of ultrasensitive biosensing platforms. In this review, immobilization strategies of Nbs on conductive supports for enhanced electrochemical immune detection of food contaminants (Fcont) and human biomarkers (Hbio) are discussed. In the case of Fcont, the direct competitive immunoassay detection using coating antigen solid surface is the most commonly used approach for efficient Nbs capture which was characterized with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) when the signal decays for increasing concentrations of free antigen prepared in aqueous solutions. In contrast, for the Hbio investigations on thiolated gold electrodes, increases in amperometric and electrochemical impedance spectroscopy (EIS) signals were recorded, with increases in the antigen concentrations prepared in PBS or spiked real human samples.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3