Experimental Investigation of Vibration Isolator for Large Aperture Electromagnetic MEMS Micromirror

Author:

Qian Lei12,Shan Yameng12,Wang Junduo12,Li Haoxiang1,Wang Kewei2,Yu Huijun2,Zhou Peng12,Shen Wenjiang12

Affiliation:

1. School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China

2. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Abstract

The Micro-Electro-Mechanical-System (MEMS) micromirror has shown great advantages in Light Detection and Ranging (LiDAR) for autonomous vehicles. The equipment on vehicles is usually exposed to environmental vibration that may degrade or even destroy the flexure of the micromirror for its delicate structure. In this work, a mechanical low-pass filter (LPF) acting as a vibration isolator for a micromirror is proposed. The research starts with the evaluation of vibration influences on the micromirror by theoretical calculation and simulation. The results illustrate that mechanical load concentrates at the slow flexure of the micromirror as it is excited to resonate in second-order mode (named piston mode) in Z-direction vibration. A specific LPF for the micromirror is designed to attenuate the response to high-frequency vibration, especially around piston mode. The material of the LPF is a beryllium-copper alloy, chosen for its outstanding properties of elasticity, ductility, and fatigue resistance. To measure the mechanical load on the micromirror in practical, the on-chip piezoresistive sensor is utilized and a relevant test setup is built to validate the effect of the LPF. Micromirrors with or without the LPF are both tested under 10 g vibration in the Z-direction. The sensor output of the device with the LPF is 35.9 mV in piston mode, while the device without the LPF is 70.42 mV. The attenuation ratio is 0.51. This result demonstrates that the LPF structure can effectively reduce the stress caused by piston mode vibration.

Funder

National Key Research and Development Program of China

Suzhou Science and Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3