Mitigation of Deicing Salt Loading to Water Resources by Transpiration from Green Infrastructure Vegetation

Author:

Zhang WuhuanORCID,Burgis Charles R.ORCID,Hayes Gail M.,Henderson Derek A.,Smith James A.ORCID

Abstract

Green infrastructure (GI) protects aquatic ecosystems from stormwater runoff caused by urban development. Bioretention (BR) is a typical GI system wherein stormwater runoff is routed to a soil basin planted with vegetation and has been shown to reduce deicing salt loads in surface runoff, but the removal mechanism of salt is poorly understood. This study explores the potential of different vegetation types to reduce deicing salt released from a BR by transpiration. Six engineered soil media columns were built in a laboratory greenhouse to simulate a 1012 m2 BR basin along Lorton Road, Fairfax County, VA, USA. The effect of vegetation type (Blue Wild Indigo and Broadleaf Cattail) and influent salt concentration on flow volume and salt mass reduction were quantified for multiple storm events. For all storm events, chloride inflow concentrations, and vegetation types, Cl− load reduction ranged from 26.1% to 33.5%, Na+ load reduction ranged from 38.2% to 47.4%, and volume reductions ranged from 11.4% to 41.9%. Different inflow salt concentrations yielded different removal rates of deicing salt, and for a given column, salt removal decreased over sequential storm events. For each influent salt concentration, columns planted with Broadleaf Cattail (BC) performed better for volume and salt mass reductions than columns planted with Blue Wild Indigo (BWI), which in turn performed better than the controls.

Funder

Virginia Transportation Research Council (VTRC) Project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3