Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation

Author:

Yuan Zhenyi,Wei Nan

Abstract

Land surface processes can significantly influence weather and climate. The Common Land Model version 2005 (CoLM2005) has been coupled to the Global Forecast System of the Global/Regional Assimilation and Prediction System (GRAPES_GFS), which is independently developed by the China Meteorological Administration. Since a new version of CoLM has been developed (CoLM2014) with updated soil basic data and parts of hydrological processes, we coupled CoLM2014 with GRAPES_GFS to investigate whether the land surface model can help to improve the prediction skill of the weather forecast model. The forecast results were evaluated against global validation datasets at different forecasting lengths and over various regions. The results demonstrate that GRAPES_GFS coupled with CoLM2005 and CoLM2014 can both well reproduce the spatial patterns and magnitude of atmospheric variables, and the effective predictable lengths of time are up to 3 days on the global scale and even up to 6 days on regional scales. Moreover, the GRAPES_GFS coupled with CoLM2014 outperforms the original one in predicting atmospheric variables. In addition, GRAPES_GFS coupled with both versions of CoLM reproduce acceptably accurate spatial distribution and magnitude of land variables. GRAPES_GFS coupled with CoLM2014 significantly improves the forecast of land surface state variables compared to the one coupled with CoLM2005, and the improvement signal is more notable than that in atmospheric variables. Overall, this study shows that CoLM is suitable for coupling with GRAPES_GFS, and the improvement of the land surface model in a weather forecast model can significantly improve the prediction skill of both atmospheric and land variables.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3