The Spatiotemporal Evolution and Prediction of Carbon Storage: A Case Study of Urban Agglomeration in China’s Beijing-Tianjin-Hebei Region

Author:

He Yingting,Xia Chuyu,Shao Zhuang,Zhao Jing

Abstract

Due to rapid urban expansion, urban agglomerations face enormous challenges on their way to carbon neutrality. Regarding China’s urban agglomerations, 25% of the land contains 75% of the population, and all types of land are used efficiently and intensively. However, few studies have explored the spatiotemporal link between changes in land use and land cover (LULC) and carbon storage. In this work, the carbon storage changes from 1990 to 2020 were estimated using the InVEST model in China’s Beijing–Tianjin–Hebei (BTH) region. By coupling the Future Land Use Simulation (FLUS) model and InVEST model, the LULC and carbon storage changes in the BTH region in 2035 and 2050 under the natural evolution scenario (NES), economic priority scenario (EPS), ecological conservation scenario (ECS), and coordinated development scenario (CDS). Finally, the spatial autocorrelation analysis of regional carbon storage was developed for future zoning management. The results revealed the following: (1) the carbon storage in the BTH region exhibited a cumulative loss of 3.5 × 107 Mg from 1990 to 2020, and the carbon loss was serious between 2000 and 2010 due to rapid urbanization. (2) Excluding the ECS, the other three scenarios showed continued expansion of construction land. Under the EPS, the carbon storage was found to have the lowest value, which decreased to 16.05 × 108 Mg in 2035 and only 15.38 × 108 Mg in 2050; under the ECS, the carbon storage was predicted to reach the highest value, 18.22 × 108 Mg and 19.00 × 108 Mg, respectively; the CDS exhibited a similar trend as the NES, but the carbon storage was found to increase. (3) The carbon storage under the four scenarios was found to have a certain degree of similarity in terms of its spatial distribution; the high-value areas were found to be clustered in the northwestern part of Beijing and the northern and western parts of Hebei. As for the number of areas with high carbon storage, the ECS was found to be the most abundant, followed by the CDS, and the EPS was found to be the least. The findings of this study can help the BTH region implement the “dual carbon” target and provide a leading example for other urban agglomerations.

Funder

National Natural Science Foundation of China

Fundamental Humanities and Social Sciences Research Funds for Ministry of Education of People's Republic of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3