Remote Sensing Estimation of Forest Carbon Stock Based on Machine Learning Algorithms

Author:

Cheng Fengyun1ORCID,Ou Guanglong1ORCID,Wang Meng2,Liu Chang1

Affiliation:

1. College of Forestry, Southwest Forestry University, Kunming 650233, China

2. Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650216, China

Abstract

Improving the precision of remote sensing estimation and implementing the fusion and analysis of multi-source data are crucial for accurately estimating the aboveground carbon storage in forests. Using the Google Earth Engine (GEE) platform in conjunction with national forest resource inventory data and Landsat 8 multispectral remote sensing imagery, this research applies four machine learning algorithms available on the GEE platform: Random Forest (RF), Classification and Regression Trees (CART), Gradient Boosting Trees (GBT), and Support Vector Machine (SVM). Using these algorithms, the entire Yunnan Province is classified into seven categories, including broadleaf forest, coniferous forest, mixed broadleaf-coniferous forest, water bodies, built-up areas, cultivated land, and other types. After a thorough comparison, the research reveals that the RF algorithm surpasses others in terms of accuracy and reliability, making it the most suitable choice for estimating aboveground carbon storage in forests using remote sensing data. Therefore, the study used the RF algorithm for both forest classification and the estimation of carbon storage. By extracting remote sensing factors; by using the Pearson correlation coefficient to select the most relevant factors; and by utilizing multiple linear regression, RF regression, and decision tree regression, a model for estimating aboveground carbon stocks in forests was developed. The results indicate that among the four classification algorithms, the RF classifier demonstrates superior performance, with an overall accuracy of 84.96% and a Kappa coefficient of 76.46%. In the RF regression models, the R2 values for the coniferous forest, broadleaf forest, and mixed needle-broadleaf forest models are 0.636, 0.663, and 0.638, respectively. In both RF and CART, the R2 values for the three forest-type models are greater than 0.6, indicating satisfactory model fitting performance. This study aims to explore the possibility of improving the estimation of forest carbon stocks in large-scale areas through fine land use classification. Additionally, the data sources used are completely free, and medium to low resolution can provide a better reference value for practical applications, thereby reducing the cost of utilization.

Funder

Xingdian Talent Support Plan of Yunnan Province

Science and Technology Plan Project of Science and Technology Department of Yunnan Province

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3