Patterns and Driving Mechanism of C, N, P Ecological Stoichiometry in Plant-Litter-Soil Systems of Monoculture and Mixed Coastal Forests in Southern Zhejiang Province of China

Author:

Bao Binghui1,Huang Xiaoling2,Xu Haidong3,Xie Hongtao2,Cheng Xiangrong4ORCID

Affiliation:

1. College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China

2. Jiyang College, Zhejiang A&F University, Hangzhou 311800, China

3. Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256603, China

4. East China Coastal Forest Ecosystem Long-Term Research Station, Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China

Abstract

Mixed forests are usually associated with higher resource utilization compared to the corresponding monocultures; however, the tree mixing effects of carbon (C), nitrogen (N), phosphorus (P) ecological stoichiometry in coastal forest ecosystems remains largely unknown. We compared the C, N, P stoichiometry in different ecosystem components (i.e., canopy layer, herb layer, litter layer, 0–20 cm and 20–40 cm soils) among two monocultures (Casuarina equisetifolia and Eucalyptus saligna) and their mixture in Taizhou, Zhejiang province, China. We also assessed the effects of the main microhabitat factors (wind speed, soil salinity, soil moisture and pH) on C, N, P stoichiometry. Two monocultures and their mixture showed the same elemental pattern of “low C and high P” for both the canopy and herb layers, and soil, indicating evident N limitations; however, the mixture intensified the N deficiency more. The mixture showed stronger correlations among the C, N, P stoichiometry than the monocultures. Redundancy and hierarchical partitioning analysis showed the overall and independent effects of the microhabitat factors on the C, N, P stoichiometry separately, in which soil moisture presented more effects on shallow soil (20–40 cm) C, N, and P, while soil salinity mainly affected the herb and litter layers; wind speed had greater effects on canopy layer C, N, P stoichiometry. These results are expected to provide a management reference for the regeneration of degraded plantations in the southern Zhejiang province of China.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3