A Comparative Analysis of Standard and Nano-Structured Glass for Enhancing Heat Transfer and Reducing Energy Consumption Using Metal and Oxide Nanoparticles: A Review

Author:

Jastaneyah Zuhair12,Kamar Haslinda M.1ORCID,Alansari Abdulrahman3,Al Garalleh Hakim2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University Teknologi Malaysia, Kuala Lampur 81310, Malaysia

2. Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah 21361, Saudi Arabia

3. Department of Mechanical Engineering, College of Engineering, University of Business and Technology, Jeddah 21361, Saudi Arabia

Abstract

The thrust to find new technology and materials has been greatly increasing due to environmental and technological challenges in the progressive world. Among new standard materials and advanced nano-materials that possess a huge potential and superior thermal, mechanical, optical, and magnetic properties, which have made them excellent and suitable components for mechanical engineering applications. The current review paper deals with recent enhancements and advances in the properties of nano-structured glasses and composites in terms of thermal and mechanical properties. A fabrication method of nano-structured glass has briefly been discussed and the phase change material (PCM) method outlined. The comprehensive review of thermal and optical properties confirms that nano-fabricated glasses show both direct and indirect running of band gaps depending on selective nano-structuring samples. The electrical and magnetic properties also show enhancement in electrical conductivity on nano-structured glasses compared to their standard counterparts. The realistic changes in thermal and mechanical properties of nano-structured glasses and composites are commonly attributed to many micro- and nano-structural distribution features like grain size, shape, pores, other flaws and defects, surface condition, impurity level, stress, duration of temperature effect on the selective samples. Literature reports that nano-structuring materials lead to enhanced phonon boundary scattering which reduces thermal conductivity and energy consumption.

Funder

Deanship of Scientific Research (DSR), University of Business and Technology, Jeddah-Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3