Effect of Pyrolysis Treatment on Phosphorus Migration and Transformation of Pig, Cow and Sheep Manure

Author:

Liu Fen12,Xiao Zhihua3,Fang Jun12,Li Hao12

Affiliation:

1. Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Hunan Agricultural University, Changsha 410128, China

2. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China

3. Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China

Abstract

Pig, cow, and sheep manure (PM, CM, and SM) are inevitable byproducts of agricultural economic development. Converting them into high add-on value biochar (PMB, CMB, and SMB) via pyrolysis is an efficient resource utilization measure. Phosphorus (P) speciation analyses help ensure the practical feasibility of the P reclamation of animal manure and their derived biochar and a reduction in environmental risk. This study conducted a modified extraction procedure to separate five inorganic P (IP) (soluble and loosely bound IP, aluminum-bound IP, Fe-bound IP, oxide-occluded IP, and Ca-bound IP) and organic P (OP) speciations, and combined X-ray diffraction (XRD) to investigate the major phosphate compound in the derived biochar after pyrolysis. Results revealed that more than 92% of P is concentrated in the derived biochar during pyrolysis processes carried out at 200–800 °C. The percentages of soluble and loosely bound IP, aluminum-bound IP, and OP in manure decreased significantly due to their transformation into more stable P fractions such as Ca-bound IP (79.01% in PMB, 800 °C) after pyrolysis. The Olsen-P percentages had a distinct reduction at 650 °C, indicating that pyrolysis at 650 °C was the optimal condition for the reduction in Olsen-P in manure.

Funder

Hunan Provincial Science and Technology Department Project

Key Project Science Foundation of Hunan Education Department, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3