Sustainability of Multiwall Carbon Nanotube Fibers and Their Cellulose Composite

Author:

Khuyen Nguyen Quang1,Elhi Fred2ORCID,Le Quoc Bao3ORCID,Kiefer Rudolf3ORCID

Affiliation:

1. Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

2. Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia

3. Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

Abstract

Nowadays, the research community envisions smart materials composed of biodegradable, biocompatible, and sustainable natural polymers, such as cellulose. Most applications of cellulose electroactive materials are developed for energy storage and sensors, while only a few are reported for linear actuators. Therefore, we introduce here cellulose-multiwall carbon nanotube composite (Cell-CNT) fibers compared with pristine multiwall carbon nanotube (CNT) fibers made by dielectrophoresis (DEP) in their linear actuation in an organic electrolyte. Electrochemical measurements (cyclic voltammetry, square wave potential steps, and chronopotentiometry) were performed with electromechanical deformation (EMD) measurements. The linear actuation of Cell-CNT outperformed the main actuation at discharging, having 7.9 kPa stress and 0.062% strain, making this composite more sustainable in smart materials, textiles, or robotics. The CNT fiber depends on scan rates switching from mixed actuation to main expansion at negative charging. The CNT fiber-specific capacitance was much enhanced with 278 F g−1, and had a capacity retention of 96% after 5000 cycles, making this fiber more sustainable in energy storage than the Cell-CNT fiber. The fiber samples were characterized by scanning electron microscopy (SEM), BET (Braunauer-Emmett-Teller) measurement, energy dispersive X-ray (EDX) spectroscopy, FTIR, and Raman spectroscopy.

Funder

Estonian Research Council

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3