Mechanisms Governing the Formation and Long-Term Sustainment of a Northeastward Moving Southwest Vortex

Author:

Yang Kang-Quan12,Xiao Di-Xiang12,Jiang Xing-Wen23,Li Zi-Rui4,Fu Shen-Ming5

Affiliation:

1. Sichuan Meteorological Observatory, Chengdu 610072, China

2. Heavy Rain and Drought–Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, China

3. Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China

4. School of Earth Sciences, Yunnan University, Kunming 650091, China

5. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

From 10 July to 12 July 2021, a long-lived (~66 h) southwest vortex (SWV), moved from Southwest China to Northeast China and caused a series of heavy rainfall events. This SWV case was rarely seen, as its lifespan was much longer than the SWVs’ mean lifespan, and the vast majority of SWVs showed a quasi-stationary behavior. It was found that the SWV formed and sustained in favorable background environments, which were characterized by a strong upper-level divergence (related to the South Asia High), a notable middle-tropospheric warm advection (related to a shortwave trough), and a vigorous low-level jet. The SWV showed remarkable interactions with a middle-tropospheric mesoscale vortex. The strong southwesterly wind in the eastern section of a deep shortwave trough east of the Tibetan Plateau acted as the steering flow for the northeastward movement of both vortices. Vorticity budget showed that the convergence-related vertical stretching dominated the SWV’s formation and development; the convection-related upward transport of cyclonic vorticity was the most favorable factor for the SWV’s sustainment, whereas, during the decaying stage, the SWV dissipated mainly due to the tilting effects and the net export transport of cyclonic vorticity. Backward trajectory analyses showed that most of the air particles that formed the SWV (at its formation time) were sourced from the lower troposphere. These air particles mainly ascended and experienced a rapid increase in cyclonic vorticity during the SWV’s formation stage. The topography of the Yunnan–Guizhou Plateau was crucial for the SWV’s formation, as around a half of the air particles (that formed the SWV) came from this region. Most of these air particles enhanced in their cyclonic vorticity and convergence when they descended along the topography of the plateau.

Funder

Sichuan Science and Technology Program

National Natural Science Foundation of China

Innovation Team Fund of Southwest Regional Meteorological Center

Open Grants of the State Key Laboratory of Severe Weather

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3