A Prediction Model of Labyrinth Emitter Service Duration (ESD) under Low-Quality (Sand-Laden Water) Irrigation

Author:

Wang Hui,Ling Gang,Wang Wene,Hu Xiaotao,Gao Xijian

Abstract

The reasonable evaluation of emitter service duration and appropriate emitter selection have become an important way to improve the efficiency of drip irrigation systems, and also provide a basis for the wide application of drip irrigation technology in agricultural and landscape irrigation. During field irrigation, both irrigation uniformity (CU) and relative average flow (Dra) play crucial roles in crop growth, so it is not appropriate to evaluate emitters based on one of these factors alone. In this study, a new comprehensive index for measuring the operating life of emitters—the emitter service duration (ESD) was established for selecting emitter products in the field. The indoor drip irrigation experiment was carried out under nine kinds of sand-laden water, and the emitters’ service duration, based on irrigation uniformity and emitter flow, was tested. By analyzing the individual effects and the comprehensive effects of them, the comprehensive measurement index of the ESD was established and the Pearson bivariate correlation analysis was used to explore the influencing factors. The results showed that the lower the quality of the irrigation water, the smaller the value of the ESD, which meant that the emitters were more likely to be blocked. Different irrigation water sources had different effects on the ESD, which were mainly caused by the characteristic size. Two dimensionless characteristic parameters (W/D and A1/2/L) are significantly correlated with ESD. Based on W/D and A1/2/L, the ESD prediction model was obtained and the accuracy could reach 86%. It could provide an accurate method for selecting emitters under different water source conditions, which is beneficial for the safe, efficient, and long-term operation of a drip irrigation systems using a low-quality water source.

Funder

National Natural Science Foundation of China

the Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3