Exploring Appropriate Search Engine Data for Interval Tourism Demand Forecasting Responding a Public Crisis in Macao: A Combined Bayesian Model

Author:

Nie Ru-Xin1,Wu Chuan1,Liang He-Ming1

Affiliation:

1. School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Public crises can bring unprecedented damage to the tourism industry and challenges to tourism demand forecasting, which is essential for crisis management and sustainable development. Existing studies mainly focused on point forecasts, but point forecasts may not be enough for the uncertain environments of public crises. This study proposes a combined Bayesian interval tourism demand forecasting model based on a forgetting curve. Moreover, considering tourists’ travel plans may be adjusted due to changing crisis situations, the choice of search engine data for forecasting tourism demand is investigated and incorporated into the proposed model to yield reliable results. Through an empirical study, this study figures out that the Baidu Index had better tourism predictive capabilities before the public crisis, whereas the Google Index effectively captured short-term fluctuations of tourism demand within the crisis period. The results also indicate that integrating both Baidu and Google Index data obtains the best prediction performance after the crisis outbreak. Our main contribution is that this study can generate flexible forecasting results in the interval form, which can effectively handle uncertainties in practice and formulate control measures for practitioners. Another novelty is successfully discovering how to select appropriate search engine data to improve the performance of tourism demand forecasts across different stages of a public crisis, thus benefiting daily operations and crisis management in the tourism sector.

Funder

the General Project of the Philosophy and Social Sciences Fund for Colleges and Universities in Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3