Sustainable Algae-Derived Carbon Particles from Hydrothermal Liquefaction: An Innovative Reinforcing Agent for Epoxy Matrix Composite

Author:

Mali Abhijeet1,Agbo Philip1,Mantripragada Shobha1,Jadhav Vishwas S.1ORCID,Wang Lijun2,Zhang Lifeng1ORCID

Affiliation:

1. Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA

2. Department of Natural Resources and Environmental Design, College of Agriculture and Environmental Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA

Abstract

Algae is a promising sustainable feedstock for the generation of bio-crude oil, which is a sustainable alternative to fossil fuels, through the thermochemical process of hydrothermal liquefaction (HTL). However, this process also generates carbon particles (algae-derived carbon, ADC) as a significant byproduct. Herein, we report a brand-new and value-added use of ADC particles as a reinforcing agent for epoxy matrix composites (EMCs). ADC particles were synthesized through HTL processing of Chlorella vulgaris (a green microalgae) and characterized for morphology, average size, specific surface area, porosity, and functional groups. The ADC particles were subsequently integrated into a representative epoxy resin (EPON 862) as a reinforcing filler at loading levels of 0.25%, 0.5%, 1%, and 2% by weight. The tensile, flexural, and Izod impact properties, as well as the thermal stability, of the resulting EMCs were evaluated. It is revealed that the ADC particles are a sustainable and effective reinforcing agent for EMCs at ultra-low loading. Specifically, the ADC-reinforced EMC with 1 wt.% ADC showed improvements of ~24%, ~30%, ~31%, and ~57% in tensile strength, Young’s modulus, elongation at break, and work of fracture (WOF), respectively, and improvements of ~10%, ~37%, ~24%, and ~39% in flexural strength, flexural modulus, flexural elongation at break, and flexural WOF, respectively, as well as an improvement of ~54% in Izod impact strength, compared to those corresponding properties of neat epoxy. In the meantime, the thermal decomposition temperatures at 60% and 80% weight loss of the abovementioned ADC-reinforced EMC increased from 410 °C to 415 °C and from 448 °C to 515 °C in comparison with those of neat epoxy. This study highlighted the potential of sustainable ADC particles as a reinforcing agent in the field of polymer matrix composite materials, which represented a novel and sustainable approach that would mitigate greenhouse gas remission and reduce reliance on nonrenewable reinforcing fillers in the polymer composite industry.

Funder

National Science Foundation

Publisher

MDPI AG

Reference29 articles.

1. May, C.A. (1988). Epoxy Resins: Chemistry and Technology, Marcel Dekker. [2nd ed.].

2. Nano and non-nano fillers in enhancing mechanical properties of epoxy resins: A brief review;Tee;Polym. Plast. Technol. Mater.,2022

3. Applications of silica nanoparticles in glass/carbon fiber-reinforced epoxy nanocomposite;Karnati;Compos. Commun.,2020

4. Matykiewicz, D. (2020). Hybrid epoxy composites with both powder and fiber filler: A Review of Mechanical and Thermomechanical Properties. Materials, 13.

5. Epoxy resin-based composites, mechanical and tribological properties: A review;Bello;Tribol. Ind.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3