Acoustic Indoor Localization Augmentation by Self-Calibration and Machine Learning

Author:

Bordoy JoanORCID,Schott Dominik JanORCID,Xie Jizhou,Bannoura AmirORCID,Klein Philip,Striet Ludwig,Hoeflinger FabianORCID,Haering Ivo,Reindl LeonhardORCID,Schindelhauer ChristianORCID

Abstract

An acoustic transmitter can be located by having multiple static microphones. These microphones are synchronized and measure the time differences of arrival (TDoA). Usually, the positions of the microphones are assumed to be known in advance. However, in practice, this means they have to be manually measured, which is a cumbersome job and is prone to errors. In this paper, we present two novel approaches which do not require manual measurement of the receiver positions. The first method uses an inertial measurement unit (IMU), in addition to the acoustic transmitter, to estimate the positions of the receivers. By using an IMU as an additional source of information, the non-convex optimizers are less likely to fall into local minima. Consequently, the success rate is increased and measurements with large errors have less influence on the final estimation. The second method we present in this paper consists of using machine learning to learn the TDoA signatures of certain regions of the localization area. By doing this, the target can be located without knowing where the microphones are and whether the received signals are in line-of-sight or not. We use an artificial neural network and random forest classification for this purpose.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Survey of Wireless Indoor Positioning Techniques and Systems

2. Lokalisierungssysteme für die Positionsbestimmung von Personen und Objekten im Innenraum;Höflinger,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3