Abstract
Clogging constitutes a significant obstacle to shield tunneling in mudstone soils. Previous research has focused on investigating the influence of soils and slurry properties on clogging, although little attention has been paid to the impact of tunneling parameters on clogging, and particularly early clogging warning during tunneling. This paper contributes to developing a real-time clogging early-warning approach, based on a self-updating machine learning method. The clogging judgment criteria are based on the statistical characteristics of whole-ring tunneling parameters. The paper proposes the use of random forest (RF) for a real-time self-updating early warning strategy for clogging. The performance of this approach is illustrated through its application to a slurry-pressure-balanced shield tunneling construction of Nanning metro line 1. Results show that the RF-based approach can predict clogging during a ring construction with only four minutes of tunneling data, with an accuracy of 95%. The RF model provided the best performance compared with the other machine learning methods. Furthermore, the RF model can realize an accurate clogging prediction in one ring, using less tunneling data with the self-updating mechanism.
Funder
National Key R&D Program of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献