Environmental Assessment of a Diesel Engine Fueled with Various Biodiesel Blends: Polynomial Regression and Grey Wolf Optimization

Author:

Alahmer AliORCID,Alahmer Hussein,Handam AhmedORCID,Rezk HegazyORCID

Abstract

A series of tests were carried out to assess the environmental effects of biodiesel blends made of different vegetable oil, such as corn, sunflower, and palm, on exhaust and noise diesel engine emissions. Biodiesel blends with 20% vegetable oil biodiesel and 80% diesel fuel by volume were developed. The tests were conducted in a stationary diesel engine test bed consisting of a single-cylinder, four-stroke, and direct injection engine at variable engine speed. A prediction framework in terms of polynomial regression (PR) was first adopted to determine the correlation between the independent variables (engine speed, fuel type) and the dependent variables (exhaust emissions, noise level, and brake thermal efficiency). After that, a regression model was optimized by the grey wolf optimization (GWO) algorithm to update the current positions of the population in the discrete searching space, resulting in the optimal engine speed and fuel type for lower exhaust and noise emissions and maximizing engine performance. The following conclusions were drawn from the experimental and optimization results: in general, the emissions of unburned hydrocarbon (UHC), carbon dioxide (CO2), and carbon monoxide (CO) from all the different types of biodiesel blends were lower than those of diesel fuel. In contrast, the concentration of nitrogen oxides (NOx) emitted by all the types of biodiesel blends increased. The noise level produced by all the forms of biodiesel, especially palm biodiesel fuel, was lowered when compared to pure diesel. All the tested fuels had a high noise level in the middle frequency band, at 75% engine load, and high engine speeds. On average, the proposed PR-GWO model exhibited remarkable predictive reliability, with a high square of correlation coefficient (R2) of 0.9823 and a low root mean square error (RMSE) of 0.0177. Finally, the proposed model achieved superior outcomes, which may be utilized to predict and maximize engine performance and minimize exhaust and noise emissions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3