Cyberattack and Fraud Detection Using Ensemble Stacking

Author:

Soleymanzadeh RahaORCID,Aljasim Mustafa,Qadeer Muhammad Waseem,Kashef Rasha

Abstract

Smart devices are used in the era of the Internet of Things (IoT) to provide efficient and reliable access to services. IoT technology can recognize comprehensive information, reliably deliver information, and intelligently process that information. Modern industrial systems have become increasingly dependent on data networks, control systems, and sensors. The number of IoT devices and the protocols they use has increased, which has led to an increase in attacks. Global operations can be disrupted, and substantial economic losses can be incurred due to these attacks. Cyberattacks have been detected using various techniques, such as deep learning and machine learning. In this paper, we propose an ensemble staking method to effectively reveal cyberattacks in the IoT with high performance. Experiments were conducted on three different datasets: credit card, NSL-KDD, and UNSW datasets. The proposed stacked ensemble classifier outperformed the individual base model classifiers.

Publisher

MDPI AG

Reference53 articles.

1. IoT Elements, Layered Architectures and Security Issues: A Comprehensive Survey

2. Payments fraud: Perception versus reality—A conference summary;Gates;Econ. Perspect.,2009

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3