Towards Building a Trustworthy Deep Learning Framework for Medical Image Analysis

Author:

Ma Kai1,He Siyuan12,Sinha Grant3,Ebadi Ashkan12ORCID,Florea Adrian4,Tremblay Stéphane2,Wong Alexander1,Xi Pengcheng12ORCID

Affiliation:

1. Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

2. Digital Technologies Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada

3. Faculty of Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada

4. Department of Emergency Medicine, McGill University, Montreal, QC H4A 3J1, Canada

Abstract

Computer vision and deep learning have the potential to improve medical artificial intelligence (AI) by assisting in diagnosis, prediction, and prognosis. However, the application of deep learning to medical image analysis is challenging due to limited data availability and imbalanced data. While model performance is undoubtedly essential for medical image analysis, model trust is equally important. To address these challenges, we propose TRUDLMIA, a trustworthy deep learning framework for medical image analysis, which leverages image features learned through self-supervised learning and utilizes a novel surrogate loss function to build trustworthy models with optimal performance. The framework is validated on three benchmark data sets for detecting pneumonia, COVID-19, and melanoma, and the created models prove to be highly competitive, even outperforming those designed specifically for the tasks. Furthermore, we conduct ablation studies, cross-validation, and result visualization and demonstrate the contribution of proposed modules to both model performance (up to 21%) and model trust (up to 5%). We expect that the proposed framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises, improving patient outcomes, increasing diagnostic accuracy, and enhancing the overall quality of healthcare delivery.

Funder

National Research Council Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3