Effect of Mn and Cu Substitution on the SrFeO3 Perovskite for Potential Thermochemical Energy Storage Applications

Author:

Darwish Esraa,Mansouri Moufida,Yilmaz DuyguORCID,Leion HenrikORCID

Abstract

Perovskites are well-known oxides for thermochemical energy storage applications (TCES) since they show a great potential for spontaneous O2 release due to their non-stoichiometry. Transition-metal-based perovskites are particularly promising candidates for TCES owing to their different oxidation states. It is important to test the thermal behavior of the perovskites for TCES applications; however, the amount of sample that can be used in thermal analyses is limited. The use of redox cycles in fluidized bed tests can offer a more realistic approach, since a larger amount of sample can be used to test the cyclic behavior of the perovskites. In this study, the oxygen release/consumption behavior of Mn- or Cu-substituted SrFeO3 (SrFe0.5M0.5O3; M: Mn or Cu) under redox cycling was investigated via thermal analysis and fluidized bed tests. The reaction enthalpies of the perovskites were also calculated via differential scanning calorimetry (DSC). Cu substitution in SrFeO3 increased the performance significantly for both cyclic stability and oxygen release/uptake capacity. Mn substitution also increased the cyclic stability; however, the presence of Mn as a substitute for Fe did not improve the oxygen release/uptake performance of the perovskite.

Funder

Adlerbertska Stiftelserna

Iris Stipendiet

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3