A Brief Introduction to the Polyurethanes According to the Principles of Green Chemistry

Author:

Brzeska JoannaORCID,Piotrowska-Kirschling AgnieszkaORCID

Abstract

Polyurethanes are most often called “green” when they contain natural, renewable additives in their network or chemical structure, such as mono- and polysaccharides, oils (mainly vegetable oils), polyphenols (e.g., lignins, tannins), or various compounds derived from agro-waste white biotechnology (Principle 7). This usually results in these polyurethanes obtained from less hazardous substrates (Principle 4). Appropriate modification of polyurethanes makes them susceptible to degradation, and the use of appropriate processes allows for their recycling (Principle 10). However, this fulfilment of other principles also predisposes them to be green. As in the production of other polymer materials, the synthesis of polyurethanes is carried out with the use of catalysts (such as biocatalysts) (Principle 9) with full control of the course of the reaction (Principle 11), which allows maximization of the atomic economy (Principle 2) and an increase in energy efficiency (Principle 6) while minimizing the risk of production waste (Principle 1). Moreover, traditional substrates in the synthesis of polyurethanes can be replaced with less toxic ones (e.g., in non-isocyanate polyurethanes), which, at the same time, leads to a non-toxic product (Principle 3, Principle 5). In general, there is no need for blocking compounds to provide intermediates in the synthesis of polyurethanes (Principle 8). Reasonable storage of substrates, their transport, and the synthesis of polyurethanes guarantee the safety and the prevention of uncontrolled reactions (Principle 12). This publication is a summary of the achievements of scientists and technologists who are constantly working to create ideal polyurethanes that do not pollute the environment, and their synthesis and use are consistent with the principles of sustainable economy.

Funder

UMG Research Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3