Abstract
A numerical investigation of the mixing performance and fluid flow in a new split and recombine (SAR) Y−Uβ micromixer is presented in this work. A parameter called connecting angle βis varied from 0° to 90° to analyze the effect on the SAR process and mixing performance. Thenumerical data shows that the SAR process strongly depends on the connecting angle (β) and maximum efficiency (93%) can be achieved when the value of β is 45°. The Y−U45° the mixer also offers higher efficiency and lower pressure drop than a known SAR ‘H−C’ mixer irrespective of Reynolds numbers. The split and recombine process, the influence of secondary flow, and pressure drop characteristics at various Reynolds numbers are also studied. In addition, mixing effectiveness is also computed, and among all examined mixers, Y−U45° is by far the best performing one.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献