Abstract
Electromagnetic ultrasonic testing technology has advantages in measuring the thickness of pipelines in service. However, the ultrasonic signal is susceptible to corrosions on the internal and external surfaces of the pipeline. Since the electromagnetic ultrasonic signal is nonlinear, and a dynamic model is difficult to establish accurately, in this paper, a new unscented Kalman filter (UKF) method based on a sliding mode observer (SMO) is proposed. The experiments, conducted on five different testing samples, validate that the proposed method can effectively process the signals drowned in noise and accurately measure the wall thickness. Compared with FFT and UKF, the signal-to-noise ratio of the signals processed by SMO–UKF shows a maximum increase of 155% and 171%. Meanwhile, a random assignment method is proposed for the self-regulation of hyper parameters in the process of Kalman filtering. Experimental results show that the automatic adjustment of hyper parameters can be accomplished in finite cycle numbers and greatly shortens the overall filtering time.
Funder
Green industrial science and technology leading project of Hubei University of Technology
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献