Oil-Removal Performance of Rotating-Disk-Type Oil Separator

Author:

Lee Haneol,Lee YeawanORCID,Kim Yong-Jin,Han Bangwoo,Kim Hak-Joon

Abstract

Oil mist adversely affects the health of workplace workers, and for this reason, regulations on the limitation of the oil-mist exposure of workers are becoming stricter. In order to reduce the amount of the exposure of workers to oil mist, it is important to effectively remove oil mist from machine tools. In this study, the collection efficiency according to the geometry of the oil-mist-collection cyclone consisting of several disks and the output power and rotation speed of the motor were evaluated. Most of the generated oil mists were less than 10 μm, and the mist removal was assessed using an optical particle counter. The cyclone airflow rate increased linearly with the rotational speed, and the rate was affected more by the cyclone geometry than by the power consumption. The mist-removal performance was significantly enhanced when plate- and cone-type disks were added to the rotating blades. The removal efficiencies of PM10 and PM2.5 under the maximum operational conditions of 5000 rpm and a flow rate of 3.73 m3/min were 93.4% and 78.4%, respectively. The removal capacity was more affected by the cyclone geometry than the rotational speed. The experimental results were similar to those predicted by the modified Lapple theory when an appropriate slope parameter (β) was used.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3