Abstract
Oil mist adversely affects the health of workplace workers, and for this reason, regulations on the limitation of the oil-mist exposure of workers are becoming stricter. In order to reduce the amount of the exposure of workers to oil mist, it is important to effectively remove oil mist from machine tools. In this study, the collection efficiency according to the geometry of the oil-mist-collection cyclone consisting of several disks and the output power and rotation speed of the motor were evaluated. Most of the generated oil mists were less than 10 μm, and the mist removal was assessed using an optical particle counter. The cyclone airflow rate increased linearly with the rotational speed, and the rate was affected more by the cyclone geometry than by the power consumption. The mist-removal performance was significantly enhanced when plate- and cone-type disks were added to the rotating blades. The removal efficiencies of PM10 and PM2.5 under the maximum operational conditions of 5000 rpm and a flow rate of 3.73 m3/min were 93.4% and 78.4%, respectively. The removal capacity was more affected by the cyclone geometry than the rotational speed. The experimental results were similar to those predicted by the modified Lapple theory when an appropriate slope parameter (β) was used.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction