Numerical Simulation of Well Type Optimization in Tridimensional Development of Multi-Layer Shale Gas Reservoir

Author:

Huang Tao,Liao Xin,Huang Zhaoqin,Song Fuquan,Wang Renyi

Abstract

Aimed at the development of shale gas reservoirs with large reservoir thickness and multiple layers, this paper carried out a numerical simulation study on the optimization of three different well types: horizontal well, deviated well, and vertical well. To make the model more in line with the characteristics of shale gas reservoirs, a two-phase gas–water seepage mathematical model of shale gas reservoirs was established, considering the adsorption and desorption of shale gas, Knudsen diffusion effect, and stress sensitivity effect. The embedded discrete fracture model was used to describe hydraulic fracture and natural fracture. Based on Fortran language, a numerical simulator for multi-layer development of shale gas reservoirs was compiled, and the calculation results were compared with the actual production data of Barnett shale gas reservoirs to verify the reliability of the numerical simulator. The spread range of hydraulic fractures in the reservoir with different natural fracture densities is calculated by the simulation to determine well spacing and fracture spacing. The orthogonal experimental design method is then used to optimize the best combination of well spacing and fracture spacing for different well types. The results show that the well productivity of the high-density (0.012 m/m2) natural fractures reservoir > the well productivity of the medium-density (0.006 m/m2) natural fractures reservoir > the well productivity of the low-density (0.001 m/m2) natural fractures reservoir. According to the design of the orthogonal test, it can be seen that the most significant factor affecting the productivity of horizontal wells is the fracture spacing in the Y direction. For deviated wells and vertical wells, the X-direction well spacing has the greatest impact on its productivity.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Science and Technology Project of Zhoushan Bureau

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3