Analysis of Leaked Crude Oil in a Mountainous Area

Author:

Wang KeORCID,Peng Jing,Zhao Jue,Hu Bing

Abstract

China–Myanmar oil and gas pipelines in Southwest China guarantee the energy security of China. Due to poor geographical circumstances, the safety of pipelines is seriously threatened by natural disasters. Therefore, there is a crucial, practical significance to establishing a model of leakage and diffusion of crude oil in the mountainous terrain and to conduct related applied studies. In the present study, computational fluid dynamic simulations of the dynamic diffusion process of leaking contaminants on the mountain surface was performed; the influence of the pipe pressure, landform, surface environment and leakage location on diffusion speed and range were discussed carefully. The results indicate that the variation of topographic altitude determines the path of leaking contaminants. Accordingly, an improved algorithm based on the SFD8 algorithm to predict the path of leaking contaminants at a low leakage rate was proposed; this would be instructive for an emergency response to ensure the safety of pipelines.

Funder

Science Foundation of China University of Petroleum, Beijing

Strategic Cooperation Technology Projects of CNPC and CUPB

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference35 articles.

1. China-myanmar energy pipelines important for their geo-strategic position;Liang;China Oil Gas,2013

2. China receives first natural gas from Myanmar pipeline;Mitra-Thakur;Eng. Technol.,2013

3. CNPC to build and operate China-Myanmar pipeline;Pipeline Gas J.,2010

4. GIS-based risk analysis of debris flow: an application in Sichuan, southwest China

5. Landslide hazard and risk assessment mapping of mountainous terrains — a case study from Kumaun Himalaya, India

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3