Author:
Bourtsalas A. C. (Thanos),Shen Tianxiao,Tian Yixi
Abstract
This study uses the U.S. EPA data and classification of products, which includes three main categories: durables with a lifetime over 3 years, non-durables with a lifetime below 3 years, and containers and packages, which are consumed within one year. It builds connections between the management of waste products and the energy sector, by evaluating the potential contribution of such products to the U.S. energy grid, and assessing the opportunity to substitute fossil fuels, both for electricity and residential heat production. Finally, this study conducts a vis-à-vis comparison between the U.S. and the EU progress on waste management, and the associated GHG emissions. Sankey diagrams were produced to represent the flows of products management from 1990 to 2018, and the results were assessed by considering the amounts produced, the composition, and the disposition methods used, the energy potential of waste products landfilled, and the associated greenhouse gases (GHG) emissions. The results indicate that the recycling of containers and packages have increased significantly during the 28-year period and became the dominant method of managing such products in the U.S. in 2015. Durable and non-durable products are mainly landfilled, and the situation has remained unchanged in the 2010s. Assuming that 30% of waste products landfilled in the U.S. were combusted for energy instead, it would have resulted in the substitution of <5% of fossil fuels used for electricity, but up to a 68% substitution of fossil fuels, such as propane, used for residential space and water heating. In the U.S., over 85% of GHG emissions are associated with the landfilling of waste materials, and although improvements in capturing and beneficially utilizing methane are implemented, the total GHG emissions have remained almost the same since 2015, with a tendency to increase. The European experience has shown that recycling and waste-to-energy are complementary in diverting materials from landfills, in enhancing energy security, and in significantly reducing GHG emissions from waste management. Future directions are discussed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference76 articles.
1. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy;United States Environmental Protection Agency (USEPA)
2. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—The Role of Waste-to-Energy in the Circular Economy,2017
3. Joint US-EU Press Release on the Global Methane Pledge;The White House
4. Overview of Greenhouse Gases;United States Environmental Protection Agency (USEPA)
5. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019;United States Environmental Protection Agency (USEPA)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献