Speed Range Extension of Dual-Stator PM Machine Using Multi-Mode Winding Switching Strategy

Author:

Lyu ShukangORCID,Yang HuiORCID,Lin Heyun,Zhan Hanlin,Liu Chaohui

Abstract

In this paper, a novel winding switching (WS) strategy is proposed for the speed range extension of a dual-stator permanent magnet machine (DS-PMM), which can achieve simple and effective dynamic mode conversion over an entire operating region. Two types of WS circuits with an inverter and two switch groups were first designed to enable the winding reconfiguration of the machine, which could operate in three modes. The WS principle was then elucidated by introducing simplified equivalent circuits. Besides, the torque–speed curves of the machine under different operating modes were analyzed, based on the mathematical model. A speed-based WS controller was, subsequently, designed to generate the WS control signal and realize the multi-mode operation according to real-time operating conditions. The feasibility of the proposed WS strategy for extending the speed range of the DS-PMM was, finally, verified by experiments.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of the Graduate School of Southeast University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3