Load Control by Demand Side Management to Support Grid Stability in Building Clusters

Author:

Hall Monika,Geissler Achim

Abstract

Increasing numbers of photovoltaic systems and heat pumps in existing building clusters can lead to an overload of the associated electric grid substations. Based on a multi-agent-based simulation of three building cluster types the impact of building flexibility in regard to the residual substation load is studied. Each building announces its available flexibility, e.g., “heat pump can be switched off/on”. A cluster master coordinator evaluates the incoming offers and decides which offers are accepted in regard to the substation’s capacity utilization. The goal is to honour the substation’s limit by shifting the residual load. This paper presents results from three typical urban building clusters for different penetration scenarios in regard to heat pumps, photovoltaic systems, batteries and electric vehicles. It is shown that in the studied building clusters a high penetration of heat pumps and photovoltaic systems can violate the existing substation’s limits, regardless of the efforts by the master coordinator. Batteries of typical capacities cannot reduce the peak residual load. The load shifting options of the master coordinator are limited.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. International Energy Agency IEA, “Electricity”https://www.iea.org/weo2018/electricity/

2. Eurostat, “Energy Consumption in Housholds”https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households#Energy_consumption_in_households_by_type_of_end-use

3. Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage

4. Demand side management for city districts

5. Demand response flexibility and flexibility potential of residential smart appliances: Experiences from large pilot test in Belgium

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3