Monte Carlo Investigation of the UK’s First EPR Nuclear Reactor Startup Core Using Serpent

Author:

Li JinfengORCID

Abstract

Computationally modelling a nuclear reactor startup core for a benchmark against the existing models is highly desirable for an independent assessment informing nuclear engineers and energy policymakers. For the first time, this work presents a startup core model of the UK’s first Evolutionary Pressurised Water Reactor (EPR) based on Monte Carlo simulations of particle collisions using Serpent 2, a state-of-the-art continuous-energy Monte Carlo reactor physics burnup code. Coupling between neutronics and thermal-hydraulic conditions with the fuel depletion is incorporated into the multi-dimensional branches, obtaining the thermal flux and fission reaction rate (power) distributions radially and axially from the three dimensional (3D) single assembly level to a 3D full core. Shannon entropy is quantified to characterise the convergence behaviour of the fission source distribution, with 3 billion neutron histories tracked by parallel computing. Source biasing is applied for the variance reduction. Benchmarking the proposed Monte Carlo 3D full-core model against the traditional deterministic transport computation suite used by the UK Office for Nuclear Regulation (ONR), a reasonably good agreement within statistics is demonstrated for the safety-related reactivity coefficients, which creates trust in the EPR safety report and informs the decision-making by energy regulatory bodies and global partners.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. UK electricity system challenges;Morse,2016

2. Overview of the UK EPR™ GDA Submission;Ardron,2012

3. Step 4 Fuel and Core Design Assessment of the EDF and AREVA UK EPR™ Reactor,2011

4. PCSR–Sub-chapter 4.3–Nuclear Design;Blair,2012

5. The Department’s policies for a secure, affordable and clean electricity supply;Morse,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3