CFD and PIV Investigation of a Liquid Flow Maldistribution across a Tube Bundle in the Shell-and-Tube Heat Exchanger with Segmental Baffles

Author:

Ligus GrzegorzORCID,Wasilewski MarekORCID,Kołodziej Szymon,Zając Daniel

Abstract

The paper presents the results of research on liquid flow maldistribution in the shell side of a shell-and-tube heat exchanger (STHE). This phenomenon constitutes the reason for the formation of the velocity reduction area and adversely affects heat transfer and pressure drop. In order to provide details of the liquid distribution in STHE, two visualization methods were utilized. First, computational fluid dynamics (CFD) code coupled with the k-ε model and the laser-based particle image velocimetry (PIV) technique was applied. The tests were carried out for a bundle comprising 37 tubes in an in-line layout with a pitch dz/t = 1.5, placed in a shell with Din = 0.1 m. The STHE liquid feed rates corresponded to Reynolds numbers Rein equal to 16,662, 24,993, and 33,324. The analysis demonstrated that the flow maldistribution in the investigated geometry originates the result of three main streams in the cross-section of the shell side: central stream, oblique stream, and bypass stream. For central and oblique streams, the largest velocity reduction areas were formed in the wake of the tubes. On the basis of the flow visualization, it was also shown that the in-line layout of the tube bundle helps to boost the wake region between successive tubes in a row. Additionally, unfavorable vortex phenomena between the last row of tubes and the lower part of the exchanger shell were identified in the investigations. The conducted studies confirmed the feasibility of both methods in the identification and assessment of fluid flow irregularities in STHE. The maximum error of the CFD method in comparison to the experimental methods did not exceed 7% in terms of the pressure drops and 11% in the range of the maximum velocities.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3