Abstract
Downwind turbines have favorable characteristics such as effective energy capture in up-flow wind conditions over complex terrains. They also have reduced risk of severe accidents in the event of disruptions to electrical networks during strong storms due to the free-yaw effect of downwind turbines. These favorable characteristics have been confirmed by wind-towing tank experiments and computational fluid dynamics (CFD) simulations. However, these advantages have not been fully demonstrated in field experiments on actual wind farms. In this study—although the final objective was to demonstrate the potential advantages of downwind turbines through field experiments—field measurements were performed using a vertical-profiling light detection and ranging (LiDAR) system on a wind farm with downwind turbines installed in complex terrains. To deduce the horizontal wind speed, vertical-profiling LiDARs assume that the flow of air is uniform in space and time. However, in complex terrains and/or in wind farms where terrain and/or wind turbines cause flow distortion or disturbances in time and space, this assumption is not valid, resulting in erroneous wind speed estimates. The magnitude of this error was evaluated by comparing LiDAR measurements with those obtained using a cup anemometer mounted on a meteorological mast and detailed analysis of line-of-sight wind speeds. A factor that expresses the nonuniformity of wind speed in the horizontal measurement plane of vertical-profiling LiDAR is proposed to estimate the errors in wind speed. The possibility of measuring and evaluating various wind characteristics such as flow inclination angles, turbulence intensities, wind shear and wind veer, which are important for wind turbine design and for wind farm operation is demonstrated. However, additional evidence of actual field measurements on wind farms in areas with complex terrains is required in order to obtain more universal and objective evaluations.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference19 articles.
1. Performance of Downwind Turbines in Complex Terrains
2. Downwind wind turbine yaw stability and performance
3. Assessment and Application of Remote Sensing Techniques, in the Report of the NEDO Research and Development Project of Next Generation Wind Turbine Technology (R&D of Basic and Applied Technology) (2008-2012);Hayasaki,2013
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献